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ABSTRACT 
Designers of distributed systems often rely on replicas for 
increased robustness, scalability, and performance. Replicated 
server architectures require some technique to select a target 
replica for each client transaction. In this paper, we use simulation 
to characterize performance (response time, selection error, 
probability of server overload) for four common replica-selection 
algorithms (random, greedy, partitioned, weighted) when applied 
in a decentralized form to client queries in a distributed object 
system deployed on a local network. We introduce two new 
selection algorithms (balanced and balanced-partitioned) that give 
improved performance over the more common algorithms. We 
find the weighted algorithm performs best among the common 
algorithms and the balanced algorithm performs best among all 
those we considered. Our findings should help designers of 
distributed object systems to make informed decisions when 
choosing among available replica-selection algorithms.  

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Distributed Programming  

General Terms 
Algorithms, Design, Measurement, Performance 

Keywords 
Distributed Object Systems, Replica Selection. 

1. INTRODUCTION 
Designers of distributed systems often rely on replicas for 
increased robustness, scalability, and performance. Replication 
appears in a growing range of applications, such as web services 
[1-15], distributed object systems [16-20], grid systems [21-22], 
and content distribution networks [25-26]. Replication systems 
require that each client transaction be assigned to a specific server 
replica for processing. Selection (or assignment) algorithms aim 
to minimize client response time, to balance server load, or to 
achieve a combination. Typical commercial systems for server 
replication [10-15] allow a designer to choose among several 
alternate selection algorithms; however, the designer is given little 
quantitative information to aid in choosing. At best, commercial 
systems outline heuristics to differentiate among available 

algorithms. Even academic papers [e.g., 1-9] do not give 
comprehensive quantitative results. 

In this paper, we aim to help designers understand quantitative 
performance differences (and underlying causes) among the most 
common algorithms (random, greedy, partitioned, and weighted) 
for replica selection. We also introduce two new algorithms 
(balanced and balanced-partitioned), and compare performance 
with the more common algorithms. We consider three 
performance characteristics: average client response time, 
probability of selection error, and probability of server overload. 

Section 2 surveys common selection algorithms typically 
implemented in commercial systems and identifies some 
algorithms proposed by researchers. Section 3 explains the design 
of our experiment, including performance metrics. Section 4 
presents simulation results, which are discussed in Section 5. We 
conclude in Section 6.  

2. REPLICA SELECTION 
Our literature survey revealed two classes of replica-selection 
algorithms. One class encompasses heuristically based, statically 
configured algorithms. One static algorithm uses a round robin 
approach [10,13,15] to rotate client transactions in turn among 
replicas. A similar algorithm (using a uniform distribution) 
randomly assigns [10,11,13] each client transaction to one of the 
available replicas. These two algorithms assume that each replica 
has similar processing power available and that the mix of 
transaction types is congruent among the client population. 
Absent these assumptions, the round robin and random algorithms 
could perform poorly; however, no dynamic measurements are 
needed for either algorithm. A third approach uses a proportional 
algorithm [13,14], which distributes client transactions among 
replicas in proportion to relative power ratings assigned by a 
system administrator. This accounts for variation in processing 
power when a server population consists of heterogeneous 
platforms. Here, some information must be collected (off-line) 
and encoded for use by the algorithm, which cannot adapt should 
configuration information prove inaccurate or transient. Our 
experiments investigate algorithms that dynamically adjust 
assignment of client transactions based on measured conditions; 
thus, we do not consider statically configured approaches. We do 
simulate random assignment as a baseline case. 
A second class of selection algorithms dynamically assigns client 
transactions based on measured conditions. The most common 
approach, greedy selection, [3,7,9-11,14,18, 23-25] assigns each 
transaction to the replica estimated to give best performance 
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to describe our study adequately. The National Institute of Standards and 
Technology neither recommends nor endorses these products or 
standards as best available for the purpose.  
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Table 1. Key Experiment Parameters 

against some metric (different systems adopt different metrics). 
Greedy selection exhibits a well-known undesirable behavior 
where transactions oscillate in groups among available replicas. 
To combat this “thundering herd” effect, some systems 
incorporate a weighted algorithm [1,8,9,11,15] that first estimates 
the performance of each replica against a selected metric and then 
distributes client transactions in proportion to the likelihood that 
each replica will provide acceptable performance. Some systems 
first partition [1,2,5,15-17,20] replicas (based on estimated 
performance against some metric) into two groups, available and 
unavailable, and then, using greedy [2,15,20], weighted [1], 
random [5,16], or multicast [17] selection, assign client 
transactions among replicas in the available group. Multicast 
selection sends a transaction to every replica in the available set 
and uses the first returned result. Our experiment investigates the 
performance of three, common dynamic replica-selection 
algorithms: greedy, weighted, and partitioned (with random 
assignment). 
Most replica-selection systems that we examined adopt a 
selection metric from one of two classes: client response time or 
server load. Estimated response time, an ideal selection metric 
from the client perspective, can be decomposed [17] as the sum of 
communications delay (CD), server queuing delay (SQ), and server 
processing time (SP). CD is important when clients access replicas 
through the Internet. SQ is salient when a server is heavily loaded. 
SP can dominate when transactions are computationally intensive. 
From a server perspective, estimated server load is an ideal 
selection metric. An alternative is estimated server latency (SL), 
which can be decomposed as SQ + SP, yielding a convenient 
relationship between response time and server load. When CD is 
similar among all clients, SL provides a reasonable approximation 
of relative response time. When highly variable, CD should be 
measured independently. Our experiments use SL as an estimator 
for client response times because we simulate a distributed object 
system deployed on a local network, where clients experience 
similar communication delays. 

3. EXPERIMENT DESIGN 
We designed an experiment to meet the following objective: 
Given a set of r replicas deployed in a local network and queried 
periodically by c clients, characterize and compare performance 
of alternate selection algorithms. Our experiments exhibit the 
following constraints: (1) client-director pairs are deployed in a 
decentralized architecture (see Figure 1), (2) replicas are 
implemented as Jini lookup services, (3) each replica executes on 
a distinct, but similar, server, (4) each server is shared with other 
applications, and (5) replica state is piggybacked on existing Jini 
multicast announcements. Below, we provide details about the 
experiment architecture, key parameters, our technique to vary 
processor availability, selection metric and algorithms, and 
performance metrics. 

3.1 Experiment Architecture 
Figure 1 outlines the experiment architecture, which implements 
five replicas, each simulating a Jini [27] lookup service and a set 
of unrelated applications. Using Jini discovery and registration 
procedures all Jini services (not shown) register a service 
description with each replica. Each client periodically queries its 
local director (that uses some selection algorithm) to determine 
the address of a replica, and then queries the selected replica for 

service descriptions. Each client query is initiated 30 s after 
receiving a reply to the previous query (the first query is issued 
after a random startup delay). Each replica periodically (every 60 
s) multicasts a Jini announcement extended to include two 
elements of replica state: (1) the number (N) of pending queries 
and (2) the current query processing rate (Q). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Key Experiment Parameters 
Table 1 summarizes key parameters in three classes: component 
quantities, startup delays, and workloads. In most instances, an 
experiment considers an increasing population of clients from 10 
to 100 (in increments of 10); however, the balanced and balanced-
partitioned algorithms require 200 clients to distinguish their 
performance. The (uniformly distributed) random startup delays 
for servers and directors are required by Jini, while higher startup 
delay for clients allows Jini discovery and registration to complete 
before initiating client queries. Each server reserves a minimum 
of 1% of its processing capacity for client queries; however, as 
much as 75% may be used for client queries, depending upon the 
server’s background load, which we vary every 60 s. 

3.3 Processor Availability 
Table 2 exhibits parameters controlling variation in processor 
availability. Each server reserves a minimum (BLMIN) and 
maximum (BLMAX) percentage (25% to 99%) of its capacity to 
process a background workload, which also defines a maximum 
(CMAX) and minimum (CMIN) capacity (75% to 1%) each server 
can devote to processing client queries. An unloaded server can 
process QRATE = 4 queries/s (assuming a query can be processed in 
QPTIME = 250 ms), which means that a loaded server’s query 
processing rate may vary from a minimum (QMIN) of 0.04 
queries/s to a maximum (QMAX) of 3 queries/s. 

Director
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Replicas

Push N & Q
every 60 s

Query Replica (30 s after previous Reply)

Reply From Replica

Typically from 10 to 100 Client/Director Pairs*
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Figure 1. Experiment Architecture 



Table 2. Parameters Controlling Query Processing Rate 
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processing a background workload 0.25BLMIN
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Every 60 s each server updates capacity (Ct) for processing 
queries, subject to a constraint that capacity may not change by 
more than 20% (CD and CI bound the maximum percentage of 
decrease and increase, respectively) from the previous capacity 
(Ct-1). The updated capacity determines the current query-
processing rate (Qt). Figure 2 displays a two-hour time series 
depicting the relationship between changes in available capacity 
(Ct) – left-hand y-axis and query-processing rate (Qt) – right-hand 
y-axis. 

 

 

 

 

 

 

 

 

 

 

We assume each query requires similar processing, i.e., 
transactions are homogeneous. We also assume query-processing 
rate remains stable between announcements because the 
schedulers in the server operating systems allocate portions of 
processor time to specific processes and periodically (each minute 
here) adjust that allocation. We further assume that 
communication delays will be insignificant (and similar) because 
we simulate deployment in a local network. 

3.4 Selection Metric and Algorithms 
Directors select replicas based on estimated latency for each 
server r (SLr). SLr = Nr/Qr, where Nr and Qr are the number of 
queries pending and the query processing rate, respectively, 
received in the most recent announcement from server r. Table 3 

defines key elements of the notation we use in the following 
description of our replica-selection algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Our baseline algorithm is random selection, where a director 
selects one of the known replicas, with each replica having an 
equal selection probability. Let S be the set of known server 
replicas, and n be the number of known server replicas. The 
director selects server replica si, where i is an integer selected 
uniformly on the interval [1..n]. The greedy algorithm requires a 
director to select the replica si with the lowest estimated server 
latency (Ni/Qi). 

In the partitioned (random selection) algorithm, a director first 
uses the state information cached for each replica to subset S into 
a set (A) of a available replicas with estimated server latencies at 
or below a threshold (TQAVAIL). The director then selects one replica 
(randomly) from A. If no replicas qualify for set A, then the 
director selects a replica randomly from set S. 

In the weighted algorithm, a director assigns each replica a weight 
based upon the inverse of estimated server latency and apportions 
the unit interval according to the weights. The director then draws 
a random real number uniformly distributed on the unit interval 
and selects the replica assigned to the corresponding portion. 

The greedy, partitioned, and weighted algorithms consider 
estimated server latency (N/Q) as a unified metric; however, 
replicas with similar server latency estimates could possess 
different capacities to absorb work. This observation led us to 
devise a balanced algorithm, where a director assigns each replica 
a weight, based on the number of queries (di) required for its 
server latency to reach the maximum estimated server latency 
among all replicas. The director then apportions the unit interval 
according to those weights and chooses a random real number 
uniformly distributed on the unit interval, selecting the replica 
assigned to the corresponding portion. Balanced selection entails 
some probability that client transactions may be assigned to 
overloaded replicas. For this reason, we devised a balanced-
partitioned variant, which first partitions replicas into two subsets, 
available and unavailable, based on comparing estimated server 
latency against TQAVAIL, and then uses the balanced algorithm to 
select a replica from among the available subset. Where the 
available subset is empty, selection is made using the balanced 
algorithm. 

Table 3. Notation for Defining Selection Algorithms 

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa
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Number of queries/second that Server i can processQi
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Figure 3(a). Average Client Response Time for 
Common Selection Algorithms 

Figure 3(c). Probability of Server Overload for 
Common Selection Algorithms 

Figure 3(b). Probability of Selection Error for 
Common Selection Algorithms 

3.5 Performance Metrics 
To compare performance among selection algorithms, we define 
three metrics: average client response time (avgRT), defined in 
Table 4, and probability of selection error (probSE) and server 
overload (probSO), defined in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. SIMULATION RESULTS 
We implemented our experiment as an SLXTM [28] simulation of 
Jini lookup servers, services, clients, and directors, executing a set 
of runs that each considered an increasing population of clients, 
each supported by a director using one of the selection algorithms 
defined in Section 3.4. Each client in each run generated 1,000 
queries, and each run was iterated 100 times; thus, each data point 
observes c x 105 replica selections. Below, we report results in 
two sets: the four common selection algorithms and the two 
algorithms we invented. 

Figures 3(a)-(c) plot performance (each graph displays a different 
metric) under increasing load for the common selection 
algorithms. Figures 4(a)-(c) plot performance for the balanced and 
balanced-partitioned algorithms, where we increase beyond 100 
clients in order to distinguish performance differences. Figures 
4(a)-(c) also include for comparison weighted selection, the best 
performing of the common algorithms. 

5. DISCUSSION 
Our results show that selecting replicas based on information 
yields superior performance over random selection, which may 
assign transactions to overloaded replicas; thus leading to higher 

response times and server latencies. One exception appears: the 
“thundering herd” effect induced by greedy selection causes 
higher variance in server latency (not shown), as transactions 
descend en masse upon the best performing replica, transforming 
it to a poor performer. Bulk arrivals ensure that information on 
which decisions were based becomes outdated quickly. 

Table 5. Definition of Probability of Selection Error and 
Probability of Server Overload 

Probability of a selection error, computed as:probSE

Number of queries received by Server i when TQi > TQMAXNOi

Total number of queries received by Server iNTi

Probability a Server is overloaded, computed as:probSO

Total time during which Server i is upTUi

Total time during which TQi > TQMAX for Server i (observed 
and updated upon arrival and departure of each query)

TOi

Server i is overloaded when TQi > TQMAX (here TQMAX = 50 s)TQMAX

Estimated time for Server i to clear its query backlog, 
computed as Ni /Qi

TQi

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

Number of Serverss

DefinitionNotation
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Partitioning replicas into two sets (based on server latency) and 
then selecting randomly among the less loaded set, provides 
general improvement over greedy selection on all metrics. 
Further, the advantage of partitioned selection increases with 
client load. Spreading transactions evenly among replicas likely 
to provide good performance does not rapidly push one particular 
replica into overload. The general advantage of partitioned 
(random) over greedy selection exhibits one exception. Below 50 
clients, servers have higher probability of being overloaded with 
partitioned (random) selection because the greedy algorithm 
assigns work in series – replica by replica – causing the number 
of overloaded servers to increase more slowly. Once all replicas 
reach saturation, the bulk arrival process of greedy selection 
creates larger backlogs, while partitioned selection spreads 
arrivals more evenly, allowing servers to spend less time in 
overload. 
Among the common algorithms, weighted selection provides the 
best performance on all metrics. Weighted selection adapts to 
changes in replica state without inducing rapid or large 
fluctuations. Greedy selection stimulates large changes in 
workload, pushing a selected replica away from the state that led 
to its selection. The partitioned algorithm induces cyclic 
oscillation in replica workload, but at a somewhat slower 
frequency than greedy selection. Weighted selection tends mainly 
to react to changes in replica state, while the greedy and 
partitioned algorithms induce feedback that alters the state to 
which they are reacting. This difference leads weighted selection 
to exhibit more stable and desirable performance. 
The balanced algorithm shares the reactive nature of weighted 
selection but improves performance for two reasons. First, 
balanced selection assigns more transactions to replicas with 
greater available processing capacity. Second, using the replica 
with the largest estimated server latency as the goal state reduces 
pressure for upward movement in system-wide server latency, and 
tends to reinforce downward movement. These reasons also 
explain why the balanced-partitioned algorithm performs well, up 
to a point. As the client population surpasses 100, performance 
degrades for the balanced-partitioned algorithm because the set of 
replicas available diminishes, forcing fewer replicas to receive 
more transactions. After load reaches saturation, partitioning 
creates a bulk-arrival process that pushes replicas into overload 
for longer periods. These results indicate that adding a 
partitioning step could diminish performance for an otherwise 
good selection algorithm.      

6. CONCLUSIONS 
We used simulation to characterize performance (response time, 
selection error, probability of server overload) for four common 
replica-selection algorithms (random, greedy, partitioned, 
weighted) when applied in a decentralized form to client queries 
in a distributed object system deployed on a local network. We 
introduced two new selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more 
common algorithms. We found that weighted selection performs 
best among the common algorithms and that balanced selection 
performs best overall. We explained why greedy and random 
algorithms should be avoided. We also provided evidence that 
preceding selection with a partitioning step can weaken an 
otherwise good selection algorithm. 
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Figure 4(a). Average Client Response Time for New 
(and Weighted) Selection Algorithms 

Figure 4(c). Probability of Server Overload for New 
(and Weighted) Selection Algorithms 

Figure 4(b). Probability of Selection Error for New 
(and Weighted) Selection Algorithms 
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